The World's Healthiest Foods are health-promoting foods that can change your life.

Try the exciting new lunch recipe from Day 7 of our upcoming 7-Day Meal Plan.

The George Mateljan Foundation is a not-for-profit foundation with no commercial interests or
advertising. Our mission is to help you eat and cook the healthiest way for optimal health.
Brussels sprouts

What's New and Beneficial About Brussels Sprouts

  • Brussels sprouts can provide you with some special cholesterol-lowering benefits if you will use a steaming method when cooking them. The fiber-related components in Brussels sprouts do a better job of binding together with bile acids in your digestive tract when they've been steamed. When this binding process takes place, it's easier for bile acids to be excreted, and the result is a lowering of your cholesterol levels. Raw Brussels sprouts still have cholesterol-lowering ability — just not as much as steamed Brussels sprouts.
  • Brussels sprouts may have unique health benefits in the area of DNA protection. A recent study has shown improved stability of DNA inside of our white blood cells after daily consumption of Brussels sprouts in the amount of 1.25 cups. Interestingly, it's the ability of certain compounds in Brussels sprouts to block the activity of sulphotransferase enzymes that researchers believe to be responsible for these DNA-protective benefits.
  • For total glucosinolate content, Brussels sprouts are now known to top the list of commonly eaten cruciferous vegetables. Their total glucosinolate content has been shown to be greater than the amount found in mustard greens, turnip greens, cabbage, kale, cauliflower, or broccoli. In Germany, Brussels sprouts account for more glucosinolate intake than any other food except broccoli. Glucosinolates are important phytonutrients for our health because they are the chemical starting points for a variety of cancer-protective substances. All cruciferous vegetables contain glucosinolates and have great health benefits for this reason. But it's recent research that's made us realize how especially valuable Brussels sprouts are in this regard.
  • The cancer protection we get from Brussels sprouts is largely related to four specific glucosinolates found in this cruciferous vegetable: glucoraphanin, glucobrassicin, sinigrin, and gluconasturtiian. Research has shown that Brussels sprouts offer these cancer-preventive components in special combination.
  • Brussels sprouts have been used to determine the potential impact of cruciferous vegetables on thyroid function. In a recent study, 5 ounces of Brussels sprouts were consumed on a daily basis for 4 consecutive weeks by a small group of healthy adults and not found to have an unwanted impact on their thyroid function. Although follow-up studies are needed, this study puts at least one large stamp of approval on Brussels sprouts as a food that can provide fantastic health benefits without putting the thyroid gland at risk.

WHFoods Recommendations

You'll want to include Brussels sprouts as one of the cruciferous vegetables you eat on a regular basis if you want to receive the fantastic health benefits provided by the cruciferous vegetable family. At a minimum, we recommend 3/4 cup of cruciferous vegetables on a daily basis. This amount is equivalent to approximately 5 cups per week. A more optimal intake amount would be 1-1/2 cups per day, or about 10 cups per week. You can use our Veggie Advisor for help in figuring out your best cruciferous vegetable options.

It is very important not to overcook Brussels sprouts. Not only do they lose their nutritional value and taste but they will begin to emit the unpleasant sulfur smell associated with overcooked cruciferous vegetables. To help Brussels sprouts cook more quickly and evenly cut each sprout into quarters. Let them sit for at least 5 minutes to bring out the health-promoting qualities and then steam them for 5 minutes. Serve with our Honey Mustard Dressing to add extra tang and flavor to Brussels sprouts.

Brussels Sprouts, cooked
1.00 cup
(156.00 grams)
Calories: 56
GI: very low

NutrientDRI/DV

 vitamin K243%

 vitamin C129%

 folate23%


 fiber16%


 choline15%


 copper14%




 iron10%








 zinc5%


This chart graphically details the %DV that a serving of Brussels sprouts provides for each of the nutrients of which it is a good, very good, or excellent source according to our Food Rating System. Additional information about the amount of these nutrients provided by Brussels sprouts can be found in the Food Rating System Chart. A link that takes you to the In-Depth Nutritional Profile for Brussels sprouts, featuring information over 80 nutrients, can be found under the Food Rating System Chart.

Health Benefits

You'll find nearly 100 studies in PubMed (the health research database at the National Library of Medicine in Washington, D.C.) that are focused on Brussels sprouts, and over half of those studies involve the health benefits of this cruciferous vegetable in relationship to cancer. This connection between Brussels sprouts and cancer prevention should not be surprising since Brussels sprouts provide special nutrient support for three body systems that are closely connected with cancer development as well as cancer prevention. These three systems are (1) the body's detox system, (2) its antioxidant system, and (3) its inflammatory/anti-inflammatory system. Chronic imbalances in any of these three systems can increase risk of cancer, and when imbalances in all three systems occur simultaneously, the risk of cancer increases significantly. Among all types of cancer, prevention of the following cancer types is most closely associated with intake of Brussels sprouts: bladder cancer, breast cancer, colon cancer, lung cancer, prostate cancer, and ovarian cancer.

Brussels Sprouts and Detox Support

The detox support provided by Brussels sprouts is both complicated and extensive. First, there is evidence from human studies that enzyme systems in our cells required for detoxification of cancer-causing substances can be activated by compounds made from glucosinolates found in Brussels sprouts. Brussels sprouts are an outstanding source of glucosinolates. The chart below shows the best studied of the glucosinolates found in Brussels sprouts and the detox-activating substances (called isothiocyanates) made from them.

Glucosinolates in Brussels sprouts and their detox-activating isothiocyanates

GlucosinolateDerived IsothiocyanateIsothiocyanate Abbreviation
glucoraphaninsulforaphaneSFN
glucobrassicinindole-3-carbinol*I3C
sinigrinallyl-isothiocyanateAITC
gluconasturtiian phenethyl-isothiocyanatePEITC

* Indole-3-carbinol (I3C) is not an isothiocyanate. It's a benzopyrrole, and it is only formed when isothiocyanates made from glucobrassicin are further broken down into non-sulfur containing compounds.

Second, the body's detox system requires ample supplies of sulfur to work effectively, and Brussels sprouts are rich in sulfur-containing nutrients. Sulfur is connected with both the smell and taste of Brussels sprouts, and too much sulfur aroma is often associated with overcooking of this vegetable. Sulfur-containing nutrients help support what is commonly referred to as Phase 2 of detoxification. Third, our body's detox system needs strong antioxidant support—especially during what is called Phase 1 of detoxification. Brussels sprouts are able to provide that kind of support because they are an excellent source of vitamin C and a very good source of manganese. Brussels sprouts also contain a wide variety of antioxidant phytonutrients, including many antioxidant flavonoids. Finally, there is evidence that the DNA in our cells is protected by naturally occurring substances in Brussels sprouts, and since many environmental toxins can trigger unwanted change in our DNA, Brussels sprouts can help prevent these toxin-triggered DNA changes.

Brussels Sprouts and Antioxidant Support

As mentioned earlier, Brussels sprouts are an important dietary source of many vitamin antioxidants, including vitamins C and A (in the form of beta-carotene). The antioxidant mineral manganese is also provided by Brussels sprouts. Flavonoid antioxidants like isorhamnetin, quercitin, and kaempferol are also found in Brussels sprouts, as are the antioxidants caffeic acid and ferulic acid. In fact, one study examining total intake of antioxidant polyphenols in France found Brussels sprouts to be a more important dietary contributor to these antioxidants than any other cruciferous vegetable, including broccoli. Some of the antioxidant compounds found in Brussels sprouts may be somewhat rare in foods overall. One such compound is a sulfur-containing compound called D3T. (D3T is the abbreviated name for 3H-1,2-dithiole-3-thione.) Researchers continue to investigate ways in which D3T is able to optimize responses by our body's antioxidant system.

Treated as a group, the antioxidant nutrients described above provide support not only for Phase 1 of the body's detoxification process but also for all of the body's cells that are at risk of oxidative damage from overly reactive oxygen-containing molecules. Chronic oxidative stress—meaning chronic presence of overly reactive oxygen-containing molecules and cumulative damage to tissue by these molecules — is a risk factor for the development of most cancer types.

Brussels Sprouts and Inflammatory/Anti-inflammatory Support

Like chronic oxidative stress, chronic unwanted inflammation is also a risk factor for many types of cancer. Exposure to environmental toxins, chronic overuse of prescription or over-the-counter medications, chronic excessive stress, chronic lack of exercise, chronic lack of sleep, and a low quality diet can all contribute to our risk of unwanted inflammation.

Brussels sprouts can help us avoid chronic, excessive inflammation through a variety of nutrient benefits. First is their rich glucosinolate content. In addition to the detox-supportive properties mentioned earlier, glucosinolates found in Brussels sprouts help to regulate the body's inflammatory/anti-inflammatory system and prevent unwanted inflammation. Particularly well-studied in this context is the glucosinolate called glucobrassicin. The glucobrassicin found in Brussels sprouts can get converted into an isothiocyanate molecule called ITC, or indole-3-carbinol. I3C is an anti-inflammatory compound that can actually operate at the genetic level, and by doing so, prevent the initiation of inflammatory responses at a very early stage.

A second important anti-inflammatory nutrient found in Brussels sprouts is vitamin K. Vitamin K is a direct regulator of inflammatory responses, and we need optimal intake of this vitamin in order to avoid chronic, excessive inflammation.

A third important anti-inflammatory component in Brussels sprouts is not one that you might expect. It's their omega-3 fatty acids. We don't tend to think about vegetables in general as important sources of omega-3s, and certainly no vegetables that are as low in total fat as Brussels sprouts. But 100 calories' worth of Brussels sprouts (about 1.5 cups) provide about 480 milligrams of the most basic omega-3 fatty acid (called alpha-linolenic acid, or ALA). That amount is more than one-third of the daily ALA amount recommended by the National Academy of Sciences in the Dietary Reference Intake recommendations, and it's about half of the ALA contained in one teaspoon of whole flaxseeds. Omega-3 fatty acids are the building blocks for the one of the body's most effective families of anti-inflammatory messaging molecules.

Brussels Sprouts and Cardiovascular Support

Researchers have looked at a variety of cardiovascular problems — including heart attack, ischemic heart disease, and atherosclerosis — and found preliminary evidence of an ability on the part of cruciferous vegetables to lower our risk of these health problems. Yet regardless of the specific cardiovascular problem, it is one particular type of cardiovascular benefit that has most interested researchers, and that benefit is the anti-inflammatory nature of Brussels sprouts and their fellow cruciferous vegetables. Scientists have not always viewed cardiovascular problems as having a central inflammatory component, but the role of unwanted inflammation in creating problems for our blood vessels and circulation has become increasingly fundamental to an understanding of cardiovascular diseases. Of particular interest here has been the isothiocyanate (ITC) sulforaphane, which is made from glucoraphanin (a glucosinolate) found in Brussels sprouts. Not only does this ITC trigger anti-inflammatory activity in our cardiovascular system — it may also be able to help prevent and even possibly help reverse blood vessel damage.

A second area you can count on Brussels sprouts for cardiovascular support involves their cholesterol-lowering ability. Our liver uses cholesterol as a basic building block to product bile acids. Bile acids are specialized molecules that aid in the digestion and absorption of fat through a process called emulsification. These molecules are typically stored in fluid form in our gall bladder, and when we eat a fat-containing meal, they get released into the intestine where they help ready the fat for interaction with enzymes and eventual absorption up into the body. When we eat Brussels sprouts, fiber-related nutrients in this cruciferous vegetable bind together with some of the bile acids in the intestine in such a way that they simply stay inside the intestine and pass out of our body in a bowel movement rather than getting absorbed along with the fat they have emulsified. When this happens, our liver needs to replace the lost bile acids by drawing upon our existing supply of cholesterol, and, as a result, our cholesterol level drops down. Brussels sprouts provide us with this cholesterol-lowering benefit whether they are raw or cooked. However, a recent study has shown that the cholesterol-lowering ability of raw Brussels sprouts improves significantly when they are steamed. In fact, when the cholesterol-lowering ability of steamed Brussels sprouts was compared with the cholesterol-lowering ability of the prescription drug cholestyramine (a medication that is taken for the purpose of lowering cholesterol), Brussels sprouts bound 27% as many bile acids (on a total dietary fiber basis).

Brussels Sprouts and Digestive Support

The fiber content of Brussels sprouts — 4 grams in every cup — makes this cruciferous vegetable a natural choice for digestive system support. You're going to get half of your Daily Value for fiber from only 200 calories' worth of Brussels sprouts. Yet the fiber content of Brussels sprouts is only one of their digestive support mechanisms. Researchers have determined that the sulforaphane made from Brussels sprouts' glucoraphanin helps protect the health of our stomach lining by preventing bacterial overgrowth of Helicobacter pylori in our stomach or too much clinging by this bacterium to our stomach wall.

Other Health Benefits from Brussels Sprouts

The anti-inflammatory nature of glucosinolates/isothiocyanates and other nutrients found in Brussels sprouts has been the basis for new research on inflammation-related health problems and the potential role of Brussels sprouts in their prevention. Current and potentially promising research is underway to examine the benefits of Brussels sprouts in relationship to our risk of the following inflammation-related conditions: Crohn's disease, inflammatory bowel disease, insulin resistance, irritable bowel syndrome, metabolic syndrome, obesity, rheumatoid arthritis, type 2 diabetes, and ulcerative colitis.

Description

All cruciferous vegetables provide integrated nourishment across a wide variety of nutritional categories and provide broad support across a wide variety of body systems as well. For more on cruciferous vegetables see:

Brussels sprouts are members of the Brassica family and therefore kin to broccoli and cabbage. They resemble miniature cabbages, with diameters of about 1 inch. They grow in bunches of 20 to 40 on the stem of a plant that grows as high as three feet tall. Brussels sprouts are typically sage green in color, although some varieties feature a red hue. They are oftentimes sold separately but can sometimes be found in stores still attached to the stem. Perfectly cooked Brussels sprouts have a crisp, dense texture and a slightly sweet, bright, and "green" taste.

It's no surprise that Brussels sprouts look like perfect miniature versions of cabbage since they are closely related, both belong to the Brassica family of vegetables. Brussels sprouts are available year round; however, they are at their best from autumn through early spring when they are at the peak of their growing season.

History

While the origins of Brussels sprouts are unknown, the first mention of them can be traced to the late 16th century. They are thought to be native to Belgium, specifically to a region near its capital, Brussels, after which they are named. They remained a local crop in this area until their use spread across Europe during World War I. Brussels sprouts are now cultivated throughout Europe and the United States. In the U.S., almost all Brussels sprouts are grown in California.

How to Select and Store

Good quality Brussels sprouts are firm, compact, and vivid green. They should be free of yellowed or wilted leaves and should not be puffy or soft in texture. Avoid those that have perforations in their leaves as this may indicate that they have aphids residing within. If Brussels sprouts are sold individually, choose those of equal size to ensure that they will cook evenly. Brussels sprouts are available year round, but their peak growing period is from autumn until early spring.

At WHFoods, we encourage the purchase of certified organically grown foods, and Brussels sprouts are no exception. Repeated research studies show that your likelihood of exposure to contaminants such as pesticides and heavy metals can be greatly reduced through the purchase of certified organic Brussels sprouts. In many cases, you may be able to find a local organic grower who sells Brussels sprouts but has not applied for formal organic certification either through the U.S. Department of Agriculture (USDA) or through a state agency. (Examples of states offering state-certified organic foods include California, New York, Oregon, and Vermont and Washington.) However, if you are shopping in a large supermarket, your most reliable source of organically grown Brussels sprouts is very likely to be Brussels sprouts that display the USDA organic logo.

Keep unwashed and untrimmed Brussels sprouts in the vegetable compartment of the refrigerator. Stored in a plastic bag, they can be kept for 10 days.

Here is the reason why we recommend refrigerating broccoli. Whenever food is stored, four basic factors affect its nutrient composition: exposure to air, exposure to light, exposure to heat, and length of time in storage. Vitamin C, vitamin B6, and carotenoids are good examples of nutrients highly susceptible to heat, and for this reason, their loss from food is very likely to be slowed down through refrigeration.

If you want to freeze Brussels sprouts, steam them first for between three to five minutes. They will keep in the freezer for up to one year.

Tips for Preparing and Cooking

Tips for Preparing Brussels Sprouts

Before washing Brussels sprouts, remove stems and any yellow or discolored leaves. Wash them well under running water to remove any insects that may reside in the inner leaves. Brussels sprouts cook quickly and taste the best when they are cut into small pieces.

The Nutrient-Rich Way of Cooking Brussels Sprouts

We recommend Healthy Steaming Brussels sprouts for maximum nutrition and flavor. Quick Steaming—similar to Healthy Sauté and Quick Boiling, our other recommended cooking methods—follows three basic cooking guidelines that are generally associated in food science research with improved nutrient retention. These three guidelines are: (1) minimal necessary heat exposure; (2) minimal necessary cooking duration; (3) minimal necessary food surface contact with cooking liquid.

Fill the bottom of a steamer pot with 2 inches of water. While waiting for the water to come to a rapid boil. If Brussels Sprouts are cut into quarters, steam for 6 minutes. If you have chopped them into smaller pieces, steam for 5 minutes. Toss with our Honey Mustard sauce to add extra flavor and nutrition. For details see 5-Minute Brussels Sprouts.

While Brussels sprouts are usually served as a side dish, they also make a nice addition to cold salads.

How to Enjoy

A Few Quick Serving Ideas

  • Since cooked Brussels sprouts are small and compact, they make a great snack food that can be simply eaten as is or seasoned with salt and pepper to taste.
  • Combine quartered cooked Brussels sprouts with sliced red onions, walnuts, and your favorite mild tasting cheese such as a goat cheese or feta. Toss with olive oil and balsamic vinegar for an exceptionally healthy, delicious side dish or salad.

WHFoods Recipes That Feature Brussels Sprouts

If you'd like even more recipes and ways to prepare beet greens the Nutrient-Rich Way, you may want to explore The World's Healthiest Foods book.

Individual Concerns

Brussels Sprouts and Goitrogens

You may sometimes hear Brussels sprouts being described as a food that contains "goitrogens," or as a food that is "goitrogenic." For helpful information in this area—including our WHFoods Recommendations—please see our article What is meant by the term "goitrogen" and what is the connection between goitrogens, food, and health?.

Nutritional Profile

Brussels sprouts are rich in many valuable nutrients. They are an excellent source of vitamin C and vitamin K. They are a very good source of numerous nutrients including folate, manganese, vitamin B6, dietary fiber, choline, copper, vitamin B1, potassium, phosphorus and omega-3 fatty acids. They are also a good source of iron, vitamin B2, protein, magnesium, pantothenic acid, vitamin A, niacin, calcium and zinc. In addition to these nutrients, Brussels sprouts contain numerous disease-fighting phytochemicals including sulforaphane, indoles, glucosinolates, isothiocynates, coumarins, dithiolthiones and phenols.

Introduction to Food Rating System Chart

In order to better help you identify foods that feature a high concentration of nutrients for the calories they contain, we created a Food Rating System. This system allows us to highlight the foods that are especially rich in particular nutrients. The following chart shows the nutrients for which this food is either an excellent, very good, or good source (below the chart you will find a table that explains these qualifications). If a nutrient is not listed in the chart, it does not necessarily mean that the food doesn't contain it. It simply means that the nutrient is not provided in a sufficient amount or concentration to meet our rating criteria. (To view this food's in-depth nutritional profile that includes values for dozens of nutrients - not just the ones rated as excellent, very good, or good - please use the link below the chart.) To read this chart accurately, you'll need to glance up in the top left corner where you will find the name of the food and the serving size we used to calculate the food's nutrient composition. This serving size will tell you how much of the food you need to eat to obtain the amount of nutrients found in the chart. Now, returning to the chart itself, you can look next to the nutrient name in order to find the nutrient amount it offers, the percent Daily Value (DV%) that this amount represents, the nutrient density that we calculated for this food and nutrient, and the rating we established in our rating system. For most of our nutrient ratings, we adopted the government standards for food labeling that are found in the U.S. Food and Drug Administration's "Reference Values for Nutrition Labeling." Read more background information and details of our rating system.

Brussels Sprouts, cooked
1.00 cup
156.00 grams
Calories: 56
GI: very low
NutrientAmountDRI/DV
(%)
Nutrient
Density
World's Healthiest
Foods Rating
vitamin K218.87 mcg24377.9excellent
vitamin C96.72 mg12941.3excellent
folate93.60 mcg237.5very good
manganese0.35 mg185.6very good
vitamin B60.28 mg165.3very good
fiber4.06 g165.2very good
choline63.34 mg154.8very good
copper0.13 mg144.6very good
vitamin B10.17 mg144.5very good
potassium494.52 mg144.5very good
phosphorus87.36 mg124.0very good
omega-3 fats0.27 g113.6very good
iron1.87 mg103.3good
vitamin B20.12 mg93.0good
protein3.98 g82.6good
pantothenic acid0.39 mg82.5good
magnesium31.20 mg82.5good
vitamin A60.45 mcg RAE72.2good
vitamin B30.95 mg61.9good
calcium56.16 mg61.8good
zinc0.51 mg51.5good
World's Healthiest
Foods Rating
Rule
excellent DRI/DV>=75% OR
Density>=7.6 AND DRI/DV>=10%
very good DRI/DV>=50% OR
Density>=3.4 AND DRI/DV>=5%
good DRI/DV>=25% OR
Density>=1.5 AND DRI/DV>=2.5%

In-Depth Nutritional Profile

In addition to the nutrients highlighted in our ratings chart, here is an in-depth nutritional profile for Brussels sprouts. This profile includes information on a full array of nutrients, including carbohydrates, sugar, soluble and insoluble fiber, sodium, vitamins, minerals, fatty acids, amino acids and more.

Brussels Sprouts, cooked
(Note: "--" indicates data unavailable)
1.00 cup
(156.00 g)
GI: very low
BASIC MACRONUTRIENTS AND CALORIES
nutrientamountDRI/DV
(%)
Protein3.98 g8
Carbohydrates11.08 g5
Fat - total0.78 g--
Dietary Fiber4.06 g16
Calories56.163
MACRONUTRIENT AND CALORIE DETAIL
nutrientamountDRI/DV
(%)
Carbohydrate:
Starch-- g
Total Sugars2.71 g
Monosaccharides-- g
Fructose-- g
Glucose-- g
Galactose-- g
Disaccharides-- g
Lactose-- g
Maltose-- g
Sucrose-- g
Soluble Fiber1.87 g
Insoluble Fiber2.18 g
Other Carbohydrates4.31 g
Fat:
Monounsaturated Fat0.06 g
Polyunsaturated Fat0.40 g
Saturated Fat0.16 g
Trans Fat0.00 g
Calories from Fat7.02
Calories from Saturated Fat1.43
Calories from Trans Fat0.00
Cholesterol0.00 mg
Water138.68 g
MICRONUTRIENTS
nutrientamountDRI/DV
(%)
Vitamins
Water-Soluble Vitamins
B-Complex Vitamins
Vitamin B10.17 mg14
Vitamin B20.12 mg9
Vitamin B30.95 mg6
Vitamin B3 (Niacin Equivalents)1.67 mg
Vitamin B60.28 mg16
Vitamin B120.00 mcg0
Biotin-- mcg--
Choline63.34 mg15
Folate93.60 mcg23
Folate (DFE)93.60 mcg
Folate (food)93.60 mcg
Pantothenic Acid0.39 mg8
Vitamin C96.72 mg129
Fat-Soluble Vitamins
Vitamin A (Retinoids and Carotenoids)
Vitamin A International Units (IU)1209.00 IU
Vitamin A mcg Retinol Activity Equivalents (RAE)60.45 mcg (RAE)7
Vitamin A mcg Retinol Equivalents (RE)120.90 mcg (RE)
Retinol mcg Retinol Equivalents (RE)0.00 mcg (RE)
Carotenoid mcg Retinol Equivalents (RE)120.90 mcg (RE)
Alpha-Carotene0.00 mcg
Beta-Carotene725.40 mcg
Beta-Carotene Equivalents725.40 mcg
Cryptoxanthin0.00 mcg
Lutein and Zeaxanthin2012.40 mcg
Lycopene0.00 mcg
Vitamin D
Vitamin D International Units (IU)0.00 IU0
Vitamin D mcg0.00 mcg
Vitamin E
Vitamin E mg Alpha-Tocopherol Equivalents (ATE)0.67 mg (ATE)4
Vitamin E International Units (IU)1.00 IU
Vitamin E mg0.67 mg
Vitamin K218.87 mcg243
Minerals
nutrientamountDRI/DV
(%)
Boron-- mcg
Calcium56.16 mg6
Chloride-- mg
Chromium-- mcg--
Copper0.13 mg14
Fluoride-- mg--
Iodine-- mcg--
Iron1.87 mg10
Magnesium31.20 mg8
Manganese0.35 mg18
Molybdenum-- mcg--
Phosphorus87.36 mg12
Potassium494.52 mg14
Selenium2.34 mcg4
Sodium32.76 mg2
Zinc0.51 mg5
INDIVIDUAL FATTY ACIDS
nutrientamountDRI/DV
(%)
Omega-3 Fatty Acids0.27 g11
Omega-6 Fatty Acids0.13 g
Monounsaturated Fats
14:1 Myristoleic0.00 g
15:1 Pentadecenoic0.00 g
16:1 Palmitol0.01 g
17:1 Heptadecenoic0.00 g
18:1 Oleic0.05 g
20:1 Eicosenoic0.00 g
22:1 Erucic0.00 g
24:1 Nervonic0.00 g
Polyunsaturated Fatty Acids
18:2 Linoleic0.12 g
18:2 Conjugated Linoleic (CLA)-- g
18:3 Linolenic0.27 g
18:4 Stearidonic-- g
20:3 Eicosatrienoic-- g
20:4 Arachidonic0.00 g
20:5 Eicosapentaenoic (EPA)-- g
22:5 Docosapentaenoic (DPA)-- g
22:6 Docosahexaenoic (DHA)-- g
Saturated Fatty Acids
4:0 Butyric0.00 g
6:0 Caproic0.00 g
8:0 Caprylic0.00 g
10:0 Capric0.00 g
12:0 Lauric0.00 g
14:0 Myristic0.00 g
15:0 Pentadecanoic0.00 g
16:0 Palmitic0.15 g
17:0 Margaric0.00 g
18:0 Stearic0.01 g
20:0 Arachidic0.00 g
22:0 Behenate0.00 g
24:0 Lignoceric0.00 g
INDIVIDUAL AMINO ACIDS
nutrientamountDRI/DV
(%)
Alanine-- g
Arginine0.24 g
Aspartic Acid-- g
Cysteine0.02 g
Glutamic Acid-- g
Glycine-- g
Histidine0.09 g
Isoleucine0.16 g
Leucine0.18 g
Lysine0.18 g
Methionine0.04 g
Phenylalanine0.12 g
Proline-- g
Serine-- g
Threonine0.14 g
Tryptophan0.04 g
Tyrosine-- g
Valine0.18 g
OTHER COMPONENTS
nutrientamountDRI/DV
(%)
Ash1.48 g
Organic Acids (Total)-- g
Acetic Acid-- g
Citric Acid-- g
Lactic Acid-- g
Malic Acid-- g
Taurine-- g
Sugar Alcohols (Total)-- g
Glycerol-- g
Inositol-- g
Mannitol-- g
Sorbitol-- g
Xylitol-- g
Artificial Sweeteners (Total)-- mg
Aspartame-- mg
Saccharin-- mg
Alcohol0.00 g
Caffeine0.00 mg

Note:

The nutrient profiles provided in this website are derived from The Food Processor, Version 10.12.0, ESHA Research, Salem, Oregon, USA. Among the 50,000+ food items in the master database and 163 nutritional components per item, specific nutrient values were frequently missing from any particular food item. We chose the designation "--" to represent those nutrients for which no value was included in this version of the database.

References

  • Ambrosone CB, Tang L. Cruciferous vegetable intake and cancer prevention: role of nutrigenetics. Cancer Prev Res (Phila Pa). 2009 Apr;2(4):298-300. 2009.
  • Angeloni C, Leoncini E, Malaguti M, et al. Modulation of phase II enzymes by sulforaphane: implications for its cardioprotective potential. J Agric Food Chem. 2009 Jun 24;57(12):5615-22. 2009.
  • Antosiewicz J, Ziolkowski W, Kar S et al. Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents. Planta Med. 2008 Oct;74(13):1570-9. 2008.
  • Banerjee S, Wang Z, Kong D, et al. 3,3'-Diindolylmethane enhances chemosensitivity of multiple chemotherapeutic agents in pancreatic cancer. 3,3'-Diindolylmethane enhances chemosensitivity of multiple chemotherapeutic agents in pancreatic cancer. 2009.
  • Bhattacharya A, Tang L, Li Y, et al. Inhibition of bladder cancer development by allyl isothiocyanate. Carcinogenesis. 2010 Feb;31(2):281-6. 2010.
  • Brat P, George S, Bellamy A, et al. Daily Polyphenol Intake in France from Fruit and Vegetables. J. Nutr. 136:2368-2373, September 2006. 2006.
  • Bryant CS, Kumar S, Chamala S, et al. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Molecular Cancer 2010, 9:47. 2010.
  • Carpenter CL, Yu MC, and London SJ. Dietary isothiocyanates, glutathione S-transferase M1 (GSTM1), and lung cancer risk in African Americans and Caucasians from Los Angeles County, California. Nutr Cancer. 2009;61(4):492-9. 2009.
  • Christopher B, Sanjeez K, Sreedhar C, et al. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Molecular Cancer Year: 2010 Vol: 9 Issue: 1 Pages/record No.: 47. 2010.
  • Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 Oct 8;269(2):291-304. 2008.
  • Cornelis MC, El-Sohemy A, Campos H. GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr. 2007 Sep;86(3):752-8. 2007.
  • Fowke JH, Morrow JD, Motley S, et al. Brassica vegetable consumption reduces urinary F2-isoprostane levels independent of micronutrient intake. Carcinogenesis, October 1, 2006; 27(10): 2096 - 2102. 2006.
  • Higdon JV, Delage B, Williams DE, et al. Cruciferous Vegetables and Human Cancer Risk: Epidemiologic Evidence and Mechanistic Basis. Pharmacol Res. 2007 March; 55(3): 224-236. 2007.
  • Hoelzl C, Glatt H, Simic T, et al. DNA protective effects of Brussels sprouts: Results of a human intervention study. AACR Meeting Abstracts, Dec 2007; 2007: B67. 2007.
  • Hu J, Straub J, Xiao D, et al. Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1. Cancer Res. 2007 Apr 15;67(8):3569-73. 2007.
  • Hutzen B, Willis W, Jones S, et al. Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells. Cancer Cell International 2009, 9:24. 2009.
  • Jiang H, Shang X, Wu H, et al. Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem Res. 2010 Jan;35(1):152-61. 2010.
  • Kahlon TS, Chiu MC, and Chapman MH. Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage. Nutr Res. 2008 Jun;28(6):351-7. 2008.
  • Kelemen LE, Cerhan JR, Lim U, et al. Vegetables, fruit, and antioxidant-related nutrients and risk of non-Hodgkin lymphoma: a National Cancer Institute-Surveillance, Epidemiology, and End Results population-based case-control study. Am J Clin Nutr. 2006 Jun;83(6):1401-10. 2006.
  • Konsue N, Ioannides C. Modulation of carcinogen-metabolising cytochromes P450 in human liver by the chemopreventive phytochemical phenethyl isothiocyanate, a constituent of cruciferous vegetables. Toxicology. 2010 Feb 9;268(3):184-90. 2010.
  • Kunimasa K, Kobayashi T, Kaji K et al. Antiangiogenic effects of indole-3-carbinol and 3,3'-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC. J Nutr. 2010 Jan;140(1):1-6. 2010.
  • Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. Journal of Translational Medicine 2009, 7:97. 2009.
  • Larsson SC, Andersson SO, Johansson JE, et al. Fruit and vegetable consumption and risk of bladder cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2008 Sep;17(9):2519-22. 2008.
  • Li F, Hullar MAJ, Schwarz Y, et al. Human Gut Bacterial Communities Are Altered by Addition of Cruciferous Vegetables to a Controlled Fruit- and Vegetable-Free Diet. Journal of Nutrition, Vol. 139, No. 9, 1685-1691, September 2009. 2009.
  • Lin J, Kamat A, Gu J, et al. Dietary intake of vegetables and fruits and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiol Biomarkers Prev. 2009 Jul;18(7):2090-7. 2009.
  • Machijima Y, Ishikawa C, Sawada S, et al. Anti-adult T-cell leukemia/lymphoma effects of indole-3-carbinol. Retrovirology 2009, 6:7. 2009.
  • McMillan M, Spinks EA, and Fenwick GR. Preliminary observations on the effect of dietary brussels sprouts on thyroid function. Hum Toxicol. 1986;5(1):15-19. 1986.
  • Moore LE, Brennan P, Karami S, et al. Glutathione S-transferase polymorphisms, cruciferous vegetable intake and cancer risk in the Central and Eastern European Kidney Cancer Study. Carcinogenesis. 2007 Sep;28(9):1960-4. Epub 2007 Jul 7. 2007.
  • Nettleton JA, Steffen LM, Mayer-Davis EJ, et al. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2006 Jun;83(6):1369-79. 2006.
  • Rungapamestry V, Duncan AJ, Fuller Z et al. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Soc. 2007 Feb;66(1):69-81. 2007.
  • Silberstein JL, Parsons JK. Evidence-based principles of bladder cancer and diet. Urology. 2010 Feb;75(2):340-6. 2010.
  • Steinbrecher A, Linseisen J. Dietary Intake of Individual Glucosinolates in Participants of the EPIC-Heidelberg Cohort Study. Ann Nutr Metab 2009;54:87-96. 2009.
  • Tang L, Zirpoli GR, Guru K, et al. Consumption of Raw Cruciferous Vegetables is Inversely Associated with Bladder Cancer Risk. 2007 Apr 15;67(8):3569-73. 2007.
  • Tang L, Zirpoli GR, Jayaprakash V, et al. Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC Cancer 2010, 10:162. 2010.
  • Tarozzi A, Morroni F, Merlicco A, et al. Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J Neurochem. 2009 Dec;111(5):1161-71. 2009.
  • Thompson CA, Habermann TM, Wang AH, et al. Antioxidant intake from fruits, vegetables and other sources and risk of non-Hodgkin's lymphoma: the Iowa Women's Health Study. Int J Cancer. 2010 Feb 15;126(4):992-1003. 2010.
  • Zhang Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res. 2010 Jan;54(1):127-35. 2010.

Printer friendly version

Send this page to a friend...

rss


Newsletter SignUp

Your Email:

Find Out What Foods You Should Eat This Week

Also find out about the recipe, nutrient and hot topic of the week on our home page.

 

Everything you want to know about healthy eating and cooking from our new book.
2nd Edition
Order this Incredible 2nd Edition at the same low price of $39.95 and also get 2 FREE gifts valued at $51.95. Read more


Healthy Eating
Healthy Cooking
Nutrients from Food
Website Articles
Community
Privacy Policy and Visitor Agreement
References
For education only, consult a healthcare practitioner for any health problems.

We're Number 1
in the World!

35 million visitors per year.
The World's Healthiest Foods website is a leading source of information and expert on the Healthiest Way of Eating and Cooking. It's one of the most visited website on the internet when it comes to "Healthiest Foods" and "Healthiest Recipes" and comes up #1 on a Google search for these phrases.

Over 100 Quick &
Easy Recipes

Our Recipe Assistant will help you find the recipe that suits your personal needs. The majority of recipes we offer can be both prepared and cooked in 20 minutes or less from start to finish; a whole meal can be prepared in 30 minutes. A number of them can also be prepared ahead of time and enjoyed later.

World's Healthiest
Foods
is expanded

What's in our new book:
  • 180 more pages
  • Smart Menu
  • Nutrient-Rich Cooking
  • 300 New Recipes
  • New Nutrient Articles and Profiles
  • New Photos and Design
privacy policy and visitor agreement | who we are | site map | what's new
For education only, consult a healthcare practitioner for any health problems.
© 2001-2017 The George Mateljan Foundation, All Rights Reserved